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Abstract 

The addition of an extra parameter to standard distributions is a common technique in statistical 

theory. This study introduces a new generalization of the Exponentiated Gumbel distribution 

named alpha power exponentiated Gumbel Type-2 (𝐴𝑃𝐸𝐺𝑇 − 2) distribution. The 𝐴𝑃𝐸𝐺𝑇 − 2 

allows for a significant amount of versatility in modeling various data forms as it accommodates 

upside-down bathtubs, decreasing, and reversed-J shapes for hazard rate function. Some of the 

𝐴𝑃𝐸𝐺𝑇 − 2’s mathematical properties are derived in close forms. The maximum likelihood 

estimation technique was used for the purpose of estimation. An application to epoxy data 

demonstrate the flexibility of the 𝐴𝑃𝐸𝐺𝑇 − 2 model compared to other models in the study. 

 

Keywords:  Alpha Power Exponentiated Gumbel Type-2 model, upside-down bathtubs, hazard rate 

function, maximum likelihood estimation. 

 

1.0 Introduction 

Oftentimes the addition of an extra shape parameter(s) induced more flexibility to distribution 

functions mainly for data analysis purposes which improve the modeling potential of the classical 

distribution. To mention a few, Azzalini (1985) studied the skew-normal distribution by the 

addition of an extra parameter to the normal distribution to induce more flexibility into the normal 

distribution. Mudholkar and Srivastava (1993) developed method that introduced an extra shape 

parameter to the Weibull distribution and called it exponentiated Weibull model which consist two 

shape parameters and one scale parameter. Marshall and Olkin (1997) developed another method 

that can be used to increase the parameter(s) of any standard probability distribution. The well-

known generators are the following: the beta-G family of distribution which was developed by 

Eugene et al. (2002), Cordeiro and de Castro (2011) developed the Kumaraswamy-G family of 

distribution, exponentiated generalized-G family of distribution was studied by Cordeiro et al. 

(2013). Hassan and Eligarhy (2016) developed the Kumaraswamy Weibull generated family of 

distributions, the Odd generalized exponential family of distribution was proposed and studied 

Alizadeh et al. (2017), the exponentiated Weibull-H family of distribution was developed by 

Cordeiro et al. (2017), exponentiated generalized-G Poisson family of distribution was developed 

and studied by Aryal and Yousof (2017). Marshall-Olkin generalized-G Poisson family of 

distribution was developed and studied by Korkmaz et al.  (2018). Oluyede, et al. (2018) developed 

the gamma Weibull-G family of distributions by combining the gamma generator with the Weibull-

G family of distributions which was defined by Bourguignon et al. (2014) and odd Lomax-G 
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family of distribution was studied by Cordeiro et al.  (2019). Recently, the alpha power 

transformation was proposed and studied by Mahdavi and Kundu (2017). 

 Let 𝐺(𝑥) represent the cumulative distribution function (cdf)  of any continuous random variable 

X, then CDF of Alpha Power Transformed (APT) family is given by 

𝐹(𝑥) = {
𝛼𝐺(𝑥) − 1

𝛼 − 1
,   𝑖𝑓 𝛼 > 0, 𝛼 ≠ 1

𝐺(𝑥),            𝛼 = 0

                                                                           (1) 

And the associated probability density function (pdf) is 

 𝑓(𝑥) = {
𝑙𝑜𝑔𝛼

𝛼−1
𝑔(𝑥)𝛼𝐺(𝑥),   𝑖𝑓 𝛼 > 0, 𝛼 ≠ 1

𝐺(𝑥),          𝑖𝑓  𝛼 = 0
                                                              (2) 

The transformation has been widely used by researchers to obtain alpha transformed distributions. 

Namely, Dey et al. (2017a, 2017b, 2018, 2019) examined the properties of the new extensions of 

generalized exponential distribution with an application to ozone data, a new extension of Weibull 

distribution with application to real-life data, extended Weibull distribution with application to 

real-life data, alpha transformed inverse Lindley distribution which exhibits upside-down bathtub 

shape failure rate, and alpha power transformed Lindley distribution with applications to 

earthquake data. Hassan et al. (2018) investigate the properties of alpha power transformed 

extended exponential distribution, alpha power Weibull distribution was studied by Nasser et al. 

(2017). Ogunde et al. (2020a, 2020b) studied the properties of alpha power extended Bur II 

distribution and alpha power extended inverted Weibull distribution respectively. 

We derived our motivation from the advantages offered by a generalized distribution which are 

relevant in modeling lifetime data that are non-monotonic exhibiting different shapes of the hazard 

function ranges from increasing, decreasing, and bathtub shapes, as well as the versatility of 

compounding alpha g family of distribution with exponentiated Inverted Weibull distribution in 

modeling real-life data. Here, we study a new generalization called the Alpha Power Exponentiated 

Gumbel type-2 (𝐴𝑃𝐸𝐺𝑇 − 2) distribution which possesses these properties. 

We are also motivated to study the 𝐴𝑃𝐸𝐺𝑇 − 2 distribution because of its simplicity and extensive 

usage of Gumbel type-2 (𝐺𝑇 − 2) distribution in modeling lifetime events. Also, the current 

generalization promotes a wider application even to complex situations that involve different 

shapes of the hazard function. 

 

2.0 The model, sub-models, and properties of 𝑨𝑷𝑬𝑮𝑻 − 𝟐 model 

The probability density function (pdf) and the associated distribution function (cdf) of the two-

Exponentiated gumbel distribution was developed and study by Okorie et al. (2016) and are given 

by  

𝑔(𝑥;𝜔, 𝜌) = 𝜔𝜌𝜃𝑥−𝜔−1𝑒−𝜃𝑥
−𝜔−1

(1 − 𝑒−𝜃𝑥
−𝜔
)
𝜌−1

,        𝑥 > 0                                            (3) 
and   

𝐺(𝑥;𝜔, 𝜌) = 1 − (1 − 𝑒−𝜃𝑥
−𝜔
)
𝜌
,        𝑥 > 0                                                                        (4) 

  

Where 𝜔, 𝑎𝑛𝑑 𝜌 are positive sha[e parameters and 𝜃 is a positive scale parameter. Several 

generalizations of the Gumbel type-2 distribution have been developed and studied, see, Okorie et 

al. (2016) proposed and studied the properties of an exponentiated form of the GTT distribution of 

Lehman type I. Okorie et al. (2017) investigated the properties of the Kumaraswamy G 
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Exponentiated Gumbel type-two distribution, Ogunde et al. (2020) developed and studied the four-

parameter extended Gumbel type-2 distribution among many others. 

 

Given that 𝐺(𝑥) is the cdf of a distribution given in (4), then inserting (4) in (1) gives another 

distribution called the APEGT-2 distribution which cdf is given by  

𝐹(𝑥; 𝛼, 𝜔, 𝜌, 𝜃) =

{
 

 𝛼
1−(1−𝑒−𝜃𝑥

−𝜔
)
𝜌

− 1

𝛼 − 1
,   𝑖𝑓 𝛼 > 0, 𝛼 ≠ 1

𝛼(1−𝑒
−𝜃𝑥−𝜔)

𝜌

,            𝛼 = 0

                                                (5) 

And the corresponding pdf to (5) is given by 

𝑓(𝑥) = {

𝑙𝑜𝑔𝛼

𝛼 − 1
𝜔𝜌𝜃𝑥−𝜔−1𝑒−𝜃𝑥

−𝜔
(1 − 𝑒−𝜃𝑥

−𝜔
)
ρ−1

𝛼1−(1−𝑒
−𝜃𝑥−𝜔)

𝜌

,   𝑖𝑓 𝛼, > 0, 𝛼 ≠ 1

𝜔ρ𝜃𝑥−𝜔−1𝑒−𝜃𝑥
−𝜔−1

(1 − 𝑒−𝜃𝑥
−𝜔
)
ρ−1

,          𝑖𝑓  𝛼 = 0

    (6) 

 Where 𝜔, ρ and 𝛼 are positive shape parameters and 𝜃 is a positive scale parameter. The plots of 

the distribution and the density functions is given in Figures 1 and 2. 

 

 
Figure 1. Graph of the distribution function of APEGT-2 distribution 
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Figure 2. Graph of the density function of APEGT-2 distribution 

 

The survival function (𝑆(𝑥)), hazard function (ℎ(𝑥)), reversed hazard function (𝑟(𝑥)), and the 

cumulative hazard function (𝜁(𝑥)) of the 𝐴𝑃𝐸𝐺𝑇 − 2 distribution are respectively given by 

𝑆(𝑥; 𝛼, 𝜔, 𝜌, 𝜃) = 1 − 
𝛼1−(1−𝑒

−𝜃𝑥−𝜔)
𝜌

− 1

𝛼 − 1
   , 𝑥 > 0,                                                   (7) 

 

ℎ(𝑥; 𝛼, 𝜔, 𝜌, 𝜃) =

𝑙𝑜𝑔𝛼
𝛼 − 1𝜔𝜌𝜃𝑥

−𝜔−1𝑒−𝑥
−𝜃𝜔−1

(1 − 𝑒−𝜃𝑥
−𝜔
)
ρ−1

𝛼1−(1−𝑒
−𝜃𝑥−𝜔)

𝜌

1 −
𝛼(1−𝑒

−𝜃𝑥−𝜔)
𝜌
− 1

𝛼 − 1

  ,   𝑥 > 0,      (8) 

and 

𝑟(𝑥; 𝛼, 𝜔, 𝜌, 𝜃) =

𝑙𝑜𝑔𝛼
𝛼 − 1𝜔𝜌𝜃𝑥

−𝜔−1𝑒−𝜃𝑥
−𝜔−1

(1 − 𝑒−𝜃𝑥
−𝜔
)
ρ−1

𝛼1−(1−𝑒
−𝜃𝑥−𝜔)

𝜌

𝛼(1−𝑒
−𝜃𝑥−𝜔)

𝜌
− 1

𝛼 − 1

  ,   𝑥 > 0.     (9) 

The graph of the cdf and the 𝑝𝑑𝑓 of 𝐴𝑃𝐸𝐺𝑇 − 2 distribution is given in figure 1 and that of the 

ℎ(𝑥; 𝛼, 𝜔, 𝜌) in figure 2. In particular, figure 2 demonstrate the flexibility of 𝐴𝑃𝐸𝐺𝑇 − 2 model in 

modeling different kinds of data exhibiting different shapes of the hazard function. We observe 

that the graph of the ℎ(𝑥; 𝛼, 𝜔, 𝜌) of 𝐴𝑃𝐸𝐺𝑇 − 2 is decreasing, increasing, upside-down bathtub.  
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Figure 3. Graph of the reliability function of APEGT-2 distribution 

 

 
Figure 4. Graph of the hazard function of APEGT-2 distribution 

 

 

2.1 Quantile function 

Quantile function can be defined as an inverse of the distribution function. Consider the relation 

𝐹(𝑋) = 𝑈 ⇒ 𝑋 = 𝐹−1(𝑈) 
Where 𝑈 follows standard Uniform distribution. The 𝑞𝑡ℎ quantile of 𝐴𝑃𝐸𝐺𝑇 − 2 distribution is 

given by 

𝑋𝑞 = {−
1

𝜃
[𝑙𝑜𝑔 (

1

𝑙𝑜𝑔𝛼
[1 − 𝑙𝑜𝑔(1 + (𝛼 − 1)𝑢)])

1
𝜌⁄

]}

−1 𝜔⁄

                             (10) 
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The lower quartile, mean, and the upper quartile 𝐴𝑃𝐸𝐺𝑇 − 2 distribution can be obtained from 

(10) by setting the value of 𝑞 to be 0.25, 0.5, and 0.75 respectively. An expression for the lower 

quartile, median, and upper quartile is given as 

𝑋0.25 = {−
1

𝜃
[𝑙𝑜𝑔 (

1

𝑙𝑜𝑔𝛼
[1 − 𝑙𝑜𝑔(1 + 0.25(𝛼 − 1))])

1
𝜌⁄

]}

−1 𝜔⁄

                                      (11) 

𝑋0.5 = {−
1

𝜃
[𝑙𝑜𝑔 (

1

𝑙𝑜𝑔𝛼
[1 − 𝑙𝑜𝑔(1 + 0.5(𝛼 − 1))])

1
𝜌⁄

]}

−1 𝜔⁄

                                           

 

and  

𝑋0.75 = {−
𝟏

𝜽
[𝑙𝑜𝑔 (

1

𝑙𝑜𝑔𝛼
[1 − 𝑙𝑜𝑔(1 + 0.75(𝛼 − 1))])

1
𝜌⁄

]}

−1 𝜔⁄

                             (12) 

2.2 Random numbers generation 

Random numbers can be generated for the 𝐴𝑃𝐸𝐺𝑇 − 2 (𝛼, 𝜌 , 𝜔, 𝜃) distribution, for this let, 

simulating values of random variable X with the cdf given in (5) and 𝑢 denote a uniform random 

variable in (0, 1), then the simulated values of X are obtained by as,  

𝑋 =  {−
1

𝜃
[𝑙𝑜𝑔 (

1

𝑙𝑜𝑔𝛼
[1 − 𝑙𝑜𝑔(1 + (𝛼 − 1)𝑢)])

1
𝜌⁄

]}

−1 𝜔⁄

                             (13) 

  

2.3 Mixture representation for the density function 

The mixture representation of the density function is a very useful tool used in deriving the 

statistical properties of generalized distribution. In this section, the mixture representation of the 

𝐴𝑃𝐸𝐺𝑇 − 2 density function is obtained. Using the following series representation: 

𝛼𝑚 =∑
(𝑙𝑜𝑔𝛼)𝑡

𝑡!

∞

𝑡=0

𝑚𝑡                                                                                        (14) 

(1 − 𝑣)𝑦 =∑(−1)𝑡 (
𝑦

𝑡
) 𝑣𝑡

∞

𝑡=0

                                                                                      (15) 

Using the series expansion given in (14) and (15) in (6), we obtain a mixture representation of the 

pdf of APEGT-2  distribution as 

𝑓(𝑥) =
𝜔𝜌𝜃

𝛼 − 1
∑

(𝑙𝑜𝑔𝛼)𝑖

𝑖!

∞

𝑖=𝑗=𝑘=0

(−1)𝑗+𝑘 (
𝑖

𝑗
) (
𝜌(𝑖 + 1)

𝑘
) 𝑥−𝜔−1𝑒−(𝑘+1)𝜃𝑥

−𝜔
                         (16) 

The above expression is a density of the 𝐺𝑇 − 2 distribution with scale parameter (𝑘 + 1)𝜃  and 

shape parameter 𝜔. 

 

3.0 Ordinary and incomplete moment 

The ordinary moments of distribution play a very important role in statistical applications. The 𝑟𝑡ℎ 

moment of a random variable X can be obtained using  
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           𝐸(𝑋𝑟) = 𝜇𝑟
′ = ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥

∞

−∞

                                                                         (17) 

Putting (16) in (17), we have 

𝜇𝑟
′ =

𝜔𝜌

𝛼 − 1
∑

(𝑙𝑜𝑔𝛼)𝑖

𝑖!

∞

𝑖=𝑗=𝑘=0

(−1)𝑗+𝑘 (
𝑖

𝑗
) (
𝜌(𝑖 + 1)

𝑘
) 𝑓𝑙                                   (18) 

where 

𝑓𝑙 = ∫ 𝑥𝑟−𝜔−1𝑒−(1+𝑘)𝜃𝑥
−𝜔

∞

−∞

 𝑑𝑥                                                                               (19) 

By letting 𝑧 = (1 + 𝑘)𝜃𝑥−𝜔 , 𝑥 = 𝑧−
1

𝜔((1 + 𝑘)𝜃)
1

𝜔 and putting it in (19), we have 

𝑓𝑙 =
1

𝜔
𝜃
𝑟
𝜔(𝑘 + 1)

𝑟
𝜔𝛤(1 − 𝑟 𝜔⁄ ) 

Finally 𝑟𝑡ℎ moment of  𝐴𝑃𝐸𝐺𝑇 − 2 distribution is given by 

𝜇𝑟
′  =

𝜌

𝛼 − 1
∑

(𝑙𝑜𝑔𝛼)𝑖

𝑖!

∞

𝑖=𝑗=𝑘=0

(−1)𝑗+𝑘 (
𝑖

𝑗
) (
𝜌(𝑖 + 1)

𝑘
)𝜃1+

𝑟
𝜔(𝑘 + 1)

𝑟
𝜔𝛤(1 − 𝑟 𝜔⁄ )                   (20) 

𝑟 < 𝜔. Fo 𝑟 = 1,2, . .. 𝛤(. ) is the gamma function. By taking 𝑟 = 1, we obtain the mean of 𝑋 that 

is, 𝜇1
′ = 𝜇. The variance of X obtained by 𝜎2 = 𝐸[(𝑋 − 𝜇)2] = 𝜇2

′ − 𝜇2. Also, we can determine 

the 𝑟𝑡ℎ central moment and 𝑟𝑡ℎ cumulant of X respectively defined by 

𝜇𝑟 = 𝐸[(𝑋 − 𝜇)𝑟] = ∑(
𝑟

ℎ
) 𝜇𝑟−ℎ

′

𝑟

ℎ=0

(−1)ℎ𝜇ℎ, 𝑘𝑟 = 𝜇𝑟
′ −∑(

𝑟 − 1

ℎ − 1
) 𝑘ℎ𝜇𝑟−ℎ

′ ,

𝑟−1

ℎ=1

 

Taking 𝑘 = 𝜇, several measures of skewness and kurtosis based on the central moments (or 

cumulants) can be obtained. 

An expression for an Incomplete moment is given by 

           𝜑𝑟(𝑡) = ∫𝑥
𝑟𝑓(𝑥)𝑑𝑥

𝑡

0

                                                                                           (21)  

Putting (16) in (21), we have 

   𝝋𝒓(𝒕) =
𝜃𝜔𝜌

𝛼 − 1
∑

(𝑙𝑜𝑔𝛼)𝑖

𝑖!

∞

𝑖=𝑗=𝑘=0

(−1)𝑗+𝑘 (
𝑖

𝑗
) (
𝜌(𝑖 + 1)

𝑘
) (−1)𝑘𝑓∗ 

where 

𝑓∗ = ∫𝑥𝑟−𝜔−1𝑒−(1+𝑘)𝜃𝑥
−𝜔

𝑡

0

 𝑑𝑥                                                                               (22) 

Also, by letting 𝑧 = (1 + 𝑘)𝜃𝑥−𝜔 , 𝑥 = 𝑧−
1

𝜔((1 + 𝑘)𝜃)
1

𝜔 and putting it in (22), we have 

𝑓𝑙 =
1

𝜔
((1 + 𝑘))

𝑟
𝜔𝛤(1 − 𝑟 𝜔⁄ , (1 + 𝑘)𝑡−𝜔) 

Finally the 𝑟𝑡ℎ incomplete moment of 𝐴𝑃𝐸𝐺𝑇 − 2 distribution is given by  
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𝜑𝑟(𝑡) =
𝜌

𝛼 − 1
∑

(𝑙𝑜𝑔𝛼)𝑖

𝑖!

∞

𝑖=𝑗=𝑘=0

(−1)𝑗+𝑘 (
𝑖

𝑗
) (
𝜌(𝑖 + 1)

𝑘
)𝜃1+

𝑟
𝜔(𝑘 + 1)

𝑟
𝜔𝛤{1 − 𝑟 𝜔⁄ , (1 + 𝑘)𝑡−𝜔}  

(23) 

   Where 𝛤(𝑙, 𝑛) = ∫ 𝑣𝑙−1𝑒−𝑣
∞

𝑛
𝑑𝑣 is the complementary incomplete gamma function. The first 

incomplete moment of 𝐴𝑃𝐸𝐺𝑇 − 2 distribution is given as 

 𝜑1(𝑡) =
𝜌

𝛼 − 1
∑

(𝑙𝑜𝑔𝛼)𝑖

𝑖!

∞

𝑖=𝑗=𝑘=0

(−1)𝑗+𝑘 (
𝑖

𝑗
) (
𝜌(𝑖 + 1)

𝑘
) 𝜃1+

𝑟
𝜔(𝑘 + 1)

1
𝜔𝛤{1 − 1 𝜔⁄ , (1 + 𝑘)𝑡−𝜔} 

(24) 

 

3.1 Maximum likelihood Estimation: Suppose a random sample of 𝑥1, 𝑥2, . . . , 𝑥𝑛  from the 

𝐴𝑃𝐸𝐺𝑇 − 2 distribution, the likelihood function for 𝑧 = (𝛼, 𝜔, 𝜌, 𝜃) is 

𝐿(𝑥, 𝜉) =∏
𝑙𝑜𝑔𝛼

𝛼 − 1
𝜔𝜌𝜃𝑥−𝜔−1𝑒−𝑥

−𝜔−1
(1 − 𝑒−𝑥

−𝜔
)
ρ−1

𝛼1−(1−𝑒
−𝑥−𝜔)

𝜌
𝑛

𝑖=1

                             (25) 

And the log-likelihood function 𝑙𝑜𝑔𝐿(𝑥, 𝑧) = 𝑙 is presented as 

𝑙 = 𝑛𝑙𝑜𝑔(𝜌) + 𝑛𝑙𝑜𝑔(𝜔) + 𝑛𝑙𝑜𝑔(𝜃) + 𝑛𝑙𝑜𝑔 (
𝑙𝑜𝑔𝛼

𝛼 − 1
) − (𝜔 + 1)∑𝑙𝑜𝑔

𝑛

𝑖=1

(𝑥𝑖) −∑𝑥𝑖
−𝜔−1

𝑛

𝑖=1

 

−(𝜌 − 1)∑𝑙𝑜𝑔(1 + 𝑒−𝜃𝑥𝑖
−𝜔
)

𝑛

𝑖=1

+ 𝑙𝑜𝑔𝛼∑1 − (1 − 𝑒−𝜃𝑥𝑖
−𝜔
)
ρ

𝑛

𝑖=1

      (26) 

We differentiate (26) with respect 𝛼, 𝜌 and 𝜔, to obtain the element of the score vector 

(𝑈𝛼 =
𝜕𝑙

𝜕𝛼
, 𝑈𝜆 =

𝜕𝑙

𝜕𝜌
, 𝑈𝜔 =

𝜕𝑙

𝜕𝜔
, 𝑈𝜃 =

𝜕𝑙

𝜕𝜃
)
𝑇

 . The elements of the score vector are given by  

𝑈𝜌 =
𝑛

𝜌
−∑𝑙𝑜𝑔(1 + 𝑒−𝜃𝑥𝑖

−𝜔
)

𝑛

𝑖=1

+∑(1 − 𝑒−𝜃𝑥𝑖
−𝜔
)
ρ
𝑙𝑜𝑔(1 − 𝑒−𝜃𝑥𝑖

−𝜔
)

𝑛

𝑖=1

         (27) 

𝑈𝜔 =
𝑛

𝜔
−∑𝑙𝑜𝑔

𝑛

𝑖=1

(𝑥𝑖) + (𝜔 + 1)∑𝑥𝑖
−𝜔−1

𝑛

𝑖=1

+ (ρ − 1)∑
𝑥𝑖
−𝜔−1𝑒−𝜃𝑥𝑖

−𝜔

(1 + 𝑒−𝜃𝑥𝑖
−𝜔
)

𝑛

𝑖=1

                    (28) 

𝑈𝛼 =
𝑛

𝛼 − 1
+
𝑛(𝛼 − 1 − 𝛼log (𝛼)

𝛼(𝛼 − 1)log (𝛼)
 +
1

𝛼
∑(1 − 𝑒−𝜃𝑥𝑖

−𝜔
)
ρ

𝑛

𝑖=1

                                                    (29) 

 

4.0   Practical Application of APEGT-2 model 

In this section, the 𝐴𝑃𝐸𝐺𝑇 − 2 distribution is compared with Alpha Power Exponentiated Inverse 

Exponential (APEIE), Alpha Power Exponentiated inverted Weibull (APEIW), and Gumbel Type-

2 (𝐺𝑇 − 2) distributions. Different goodness of fit measures like Kolmogorov- Smirnov (K-S) 

statistics, Akaike Information Criterion (AIC), consistent Akaike Information Criterion (CAIC), 

and Bayesian Information Criterion (BIC) are obtained using R-package for real data sets: fracture 

toughness, taxes revenue’s data and coal mining disasters data. The better fit corresponds to 

smaller, AIC, CAIC, BIC, 𝑘 − 𝑠 and − 𝑙 value. The Maximum Likelihood Estimates (MLEs) of 

the unknown parameters and values of goodness of fit measures are computed for 𝐴𝑃𝐸𝐺𝑇 − 2 

distribution and its sub-models 
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The data set is the life of fatigue fracture of Kevlar 373/epoxy that are subject to constant pressure 

at the 90% stress level until all had failed. The data was provided and studied in Andrews and 

Herzberg (2012). The data set are: 0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 

0.5671, 0.6566, 0.6748, 0.6751, 0.6753, 0.7696, 0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 

0.9120, 0.9836, 1.0483, 1.0596, 1.0773, 1.1733, 1.2570, 1.2766, 1.2985, 1.3211, 1.3503, 1.3551, 

1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 1.7460, 1.7630, 1.7746, 1.8275, 1.8375, 1.8503, 

1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903, 2.1093, 2.1330, 2.2100, 2.2460, 

2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 3.4045, 3.4846, 3.7433, 

3.7455, 3.9143, 4.8073, 5.4005, 5.4435, 5.5295, 6.5541, 9.0960. Table 1 shows that the epoxy data 

is positively skewed, leptokurtic, and over-dispersed. The graph of total time on test (TTT) and the 

violin plots indicates that the epoxy data exhibits a nonmonotone failure rate is also positively 

skewed. 

  

Table 1  Summary statistics for the Epoxy data set  

𝑞1 𝑀𝑒𝑑𝑖𝑎𝑛 𝑚𝑒𝑎𝑛 𝑞3 𝑟𝑎𝑛𝑔𝑒 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 
0.905 1.736 1.959 2.296 9.065 2.477 8.161 1.979 
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Figure 5.0 plot of TTT plot and Violin plot 
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Table 2:  Analytical results of the 𝐴𝑃𝐸𝐺𝑇 − 2 model and other competing models for Epoxy data 

𝑀𝑜𝑑𝑒𝑙 𝛼 𝜔 𝜌 𝜃 −𝑙 𝐴𝐼𝐶 𝐶𝐴𝐼𝐶 𝐵𝐼𝐶 𝑘 
𝐴𝑃𝐸𝐺𝑇
− 2  

11.81 

(7.32) 

18.67 

(11.65) 

0.34 

(0.06) 

2.99 

(0.67) 

124.27 256.54 257.10 265.86 0.101 

𝐴𝑃𝐸𝐼𝑊 20.84 

(9.63) 

2.75 

(0.28) 
− 
(−) 

0.63 

(0.05) 

132.79 271.58 271.91 278.57 0.143 

𝐴𝑃𝐸𝐼𝐸 17.51 

(7.08) 

1.20 

(0.16) 
− 
(−) 

0.39 

(0.08) 

144.55 295.11 295.44 302.10 0.007 

𝐺𝑇 − 2 − 
(−) 

0.86 

(0.11) 

0.76 

(0.05) 
− 
(−) 

153.54 311.08 311.24 315.74 0.190 

 

The new 𝐴𝑃𝐸𝐺𝑇 − 2  model is much better than other three important competitive models with 

smallest value of 𝐴𝐼𝐶, 𝐶𝐴𝐼𝐶, 𝐵𝐼𝐶, and 𝑘 value in modeling the second data set. 

 

5.0 Concluding Remarks 

We have developed studied the 𝐴𝑃𝐸𝐺𝑇 − 2 distribution along with its properties such as: 

descriptive measures based on the quantiles, moments, incomplete moments, Lorenz and 

Bonferroni curves, stress-strength reliability, weighted moment, entropy, and order statistics. 

Maximum Likelihood estimates are computed. To illustrate the performance of the MLEs, a 

lifetime data sets was used. Application of the APEGT-2 model to Epoxy data is presented to 

demonstrate its tractability and flexibility in modeling real life data and have shown that the 

APEGT-2 distribution is empirically better for modeling epoxy data than all other models 

considered in this study.  
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